中华医学会系列杂志
Chinese Journal of Clinicians ISSN 1674-0785 CN 11-9147/R 联系我们网站地图帮助中心
期刊导读
期刊存档

您的位置:首页>> 文章摘要

解偶联蛋白3在2型糖尿病发生发展中的作用

郑银1 康文娟2 马婵娟2

030001 太原,山西医科大学1,030012 太原,山西医科大学附属人民医院内分泌科2

康文娟,Email: kwjnfm@163.com

国家自然科学基金青年基金(81300698)

摘 要: 解偶联蛋白3(UCP3)是解偶联蛋白家族成员之一,系线粒体内膜上阴离子转运蛋白,主要通过质子漏的作用降低线粒体膜内外电化学梯度,影响电子呼吸链,从而使ATP和活性氧的产生减少,使能量以热能的形式释放。UCP3主要在骨骼肌中表达,而骨骼肌是机体外周摄取葡萄糖的主要组织,同时骨骼肌胰岛素抵抗是2型糖尿病患者的主要缺陷,故人们推测,解偶联蛋白3可能在2型糖尿病的发生发展中发挥重要作用。深入探索UCP3在2型糖尿病中的作用有助于为2型糖尿病的治疗提供一个新的治疗靶点。

关键词:解偶联蛋白3; 糖尿病,2型; 胰岛素抵抗; 肌,骨骼; 线粒体蛋白质类

Uncoupling protein 3 and type 2 diabetes mellitus

Zheng Yin1, Kang Wenjuan2, Ma Chanjuan2.

1Shanxi Medical University, Taiyuan 030001, China; 2Department of Endocrinology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China

Kang Wenjuan, Email: kwjnfm@163.com

Abstract: Uncoupling protein 3 (UCP3) is one of the family members of uncoupling proteins, which is a mitochondrial anion carrier protein. These anion carrier proteins transport protons (H+) to the mitochondrial matrix and in turn dissipate the proton motive force as heat and uncouple the substrate oxidation from the production of ATP. UCP3 is mainly expressed in skeletal muscle which is the main organization of the body peripheral glucose uptake and skeletal muscle insulin resistance is the primary defect in type 2 diabetes (T2DM), therefore, people assume that UCP3 may play an important role in the process of the development of T2DM. The elucidation of the exact role played by UCP3 may provide an attractive therapeutic target for T2DM.

Key words: Uncoupling protein 3; Diabetes mellitus, type 2; Insulin resistance; Muscle, skeletal; Mitochondrial proteins

评论   收藏 全文阅读: FullText |

文献标引:郑银1 康文娟2 马婵娟2.解偶联蛋白3在2型糖尿病发生发展中的作用[J/CD].中华临床医师杂志:电子版,2017,11(4):630.

参考文献:
  [1] Boss O, Samec S, Paoloni-Giacobino A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue- specific expression[J]. FEBS Lett, 1997, 408(1): 39-42.

  [2] Tu N, Chen H, Winnikes U, et al. Functional characterization of the 5′-flanking and the promoter region of the human UCP3(hUCP3) gene[J]. Life Sci, 2000, 67(18): 2267-2279.

  [3] Cadenas S, Buckingham JA, Samec S, et al. UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged[J]. FEBS Lett, 1999, 462(3): 257-260.

  [4] Gong DW, Monemdjou S, Gavrilova O, et al. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3[J]. J Biol Chem, 2000, 275(21): 16251-16257.

  [5] Vidal-Puig AJ, Grujic D, Zhang CY, et al. Energy metabolism in uncoupling protein 3 gene knockout mice[J]. J Biol Chem, 2000, 275(21): 16258-16266.

  [6] Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3[J]. Cell Metab, 2005, 2(2): 85-93.

  [7] Lombardi A, Grasso P, Moreno M, et al. Interrelated influence of superoxides and free fatty acids over mitochondrial uncoupling in skeletal muscle[J]. Biochim Biophys Acta, 2008, 1777(7/8): 826-833.

  [8] Federica C, Rosalba S, Pieter DL, et al. Uncoupling proteins: a complex journey to function discovery[J]. Biofactors, 2009, 35(5): 417-428.

  [9] Bézaire V, Seifert EL, Harper ME. Uncoupling protein-3: clues in an ongoing mitochondrial mystery[J]. FASEB J, 2007, 21(2): 312-324.

  [10] Costford SR, Chaudhry SN, Crawford SA, et al. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3[J]. Am J Physiol Endocrinol Metab, 2008, 295(5): E1018-E1024.

  [11] Senese R, Valli V, Moreno M, et al. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways[J]. Pflugers Arch, 2011, 461(1): 153-164.

  [12] Nabben M, Hoeks J, Moonenkornips E, et al. Significance of uncoupling protein 3 in mitochondrial function upon mid- and long-term dietary high-fat exposure[M]//Children of the rising sun. Reynal & Hitchcock, 2011: 4010-4017.

  [13] Goglia F, Skulachev VP. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet[J]. FASEB J, 2003, 17(12): 1585-1591.

  [14] Nabben M, Hoeks J, Briedé JJ, et al. The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice[J]. FEBS Lett, 2008, 582(30): 4147-4152.

  [15] Schrauwen P, Hesselink MK. The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity?[J]. Proc Nutr Soc, 2004, 63(2): 287292.

  [16] Korshunov S, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria[J]. FEBS Lett, 1997, 416(1): 15-18.

  [17] Mailloux RJ, Seifert EL, Bouillaud F, et al. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3[J]. J Biol Chem, 2011, 286(24): 21865-21875.

  [18] Lombardi A, Busiello RA, Napolitano L, et al. UCP3 translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupling[J]. J Biol Chem, 2010, 285(22): 16599- 16605.

  [19] Goodpaster BH, He J, Watkins S, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes[J]. J Clin Endocrinol Metab, 2001, 86(12): 5755-5761.

  [20] Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes[J]. Endocrine Reviews, 2010, 31(3): 364-395.

  [21] Costford SR, Chaudhry SN, Salkhordeh M, et al. Effects of the presence, absence, and overexpression of uncoupling protein-3 on adiposity and fuel metabolism in congenic mice[J]. Am J Physiol Endocrinol Metab, 2006, 290(6): 1304-1312.

  [22] Son C, Hosoda K, Ishihara K, et al. Reduction of diet-induced obesity in transgenic mice overexpressing uncoupling protein 3 in skeletal muscle[J]. Diabetologia, 2004, 47(1): 47-54.

  [23] Fink BD, Herlein JA, Almind K, et al. Mitochondrial proton leak in obesity-resistant and obesity-prone mice[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 293(5): 1773-1780.

  [24] Aguer C, Fiehn O, Seifert EL, et al. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation[J]. FASEB J, 2013, 27(10): 4213-4225.

  [25] Golozoubova V, Cannon B, Nedergaard J. UCP1 is essential for adaptive adrenergic nonshivering thermogenesis[J]. Am J Physiol Endocrinol Metab, 2006, 291(2): E350-E357.

  [26] Choi CS, Fillmore JJ, Kim JK, et al. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance[J]. J Clin Invest, 2007, 117(7): 1995-2003.

  [27] Schrauwen P, Hesselink MK, Blaak EE, et al. Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes[J]. Diabetes, 2001, 50(12): 2870-2873.

  [28] Schrauwen P, Hesselink MK. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes[J]. Diabetes, 2004, 53(6): 1412-1417.

  [29] Mensink M, Hesselink MKC, Borghouts LB, et al. Skeletal muscle uncoupling protein-3 restores upon intervention in the prediabetic and diabetic state: implications for diabetes pathogenesis?[J]. Diabetes Obes Metab, 2007, 9(4): 594-596.

  [30] Schrauwen P, Xia J, Walder K, et al. A novel polymorphism in the proximal UCP3 promoter region: effect on skeletal muscle UCP3 mRNA expression and obesity in male non-diabetic Pima Indians[J]. Int J Obes (Lond), 1999, 23(12): 1242-1245.

  [31] Meirhaeghe A, Amouyel P, Helbecque N, et al. An uncoupling protein 3 gene polymorphism associated with a lower risk of developing TypeⅡ diabetes and with atherogenic lipid profile in a French cohort[J]. Diabetologia, 2000, 43(11): 1424-1428.

  [32] Herrmann SM, Wang JG, Staessen JA, et al. Uncoupling protein 1 and 3 polymorphisms are associated with waist-to-hip ratio[J]. J Mol Med (Berl), 2003, 81(5): 327-332.

  [33] Liu Y J, Liu PY, Long J, et al. Linkage and association analyses of the UCP3 gene with obesity phenotypes in Caucasian families[J]. Physiol Genomics, 2005, 22(2): 197-203.

  [34] Brondani LD, Souza BM, Assmann TS, et al. Association of the UCP polymorphisms with susceptibility to obesity: case-control study and meta-analysis[J]. Mol Biol Rep, 2014, 41(8): 5053-5067.

  [35] Lapice E, Monticelli A, Cocozza S, et al. The energy intake modulates the association of the-55CT polymorphism of UCP3 with body weight in type 2 diabetic patients[J]. Int J Obes (Lond), 2014, 38(6): 873-877.

  [36] Argyropoulos G, Brown AM, Willi SM, et al. Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes[J]. J Clin Invest, 1998, 102(7): 1345-1351.

  [37] Adams SH, Hoppel CL, Lok KH, et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women[J]. J Nutr, 2009, 139(6): 1073-1081.

  [38] Musa CV, Mancini A, Alfieri A, et al. Four novel UCP3 gene variants associated with childhood obesity: effect on fatty acid oxidation and on prevention of triglyceride storage[J]. Int J Obes (Lond), 2011, 36(2): 207-217.

综 述

解偶联蛋白3在2型糖尿病发生发展中的作用

郑银1 康文娟2 马婵娟2. .中华临床医师杂志:电子版 2017;11(4):630.

摘要 FullText 评论 收藏

灌注成像在阿尔茨海默病与轻度认知障碍中的应用

汝艳辉1 王新怡2. .中华临床医师杂志:电子版 2017;11(4):634.

摘要 FullText 评论 收藏

动脉瘤性蛛网膜下腔出血再出血危险因素的探讨

陈风 赵学明. .中华临床医师杂志:电子版 2017;11(4):640.

摘要 FullText 评论 收藏

脂多糖致急性肺损伤机制研究进展及还原型谷胱甘肽保护作用

姜琴 张文凯. .中华临床医师杂志:电子版 2017;11(4):645.

摘要 FullText 评论 收藏

吸入性肺炎相关生物学标记物的研究进展

张晨露 牛小媛. .中华临床医师杂志:电子版 2017;11(4):650.

摘要 FullText 评论 收藏

利用免疫缺陷动物构建骨肉瘤动物模型研究进展

张龙 葛乔枫 吕智. .中华临床医师杂志:电子版 2017;11(4):654.

摘要 FullText 评论 收藏

前列腺癌骨转移动物模型研究进展

齐思勇1 施明2 高江平1. .中华临床医师杂志:电子版 2017;11(4):658.

摘要 FullText 评论 收藏

维生素D与自身免疫性甲状腺疾病的研究进展

蔺亚斌 兰丽珍. .中华临床医师杂志:电子版 2017;11(4):667.

摘要 FullText 评论 收藏

胫骨远端关节外骨折的治疗研究进展

杜武军1,2 徐彬2 刘宸赫2. .中华临床医师杂志:电子版 2017;11(4):671.

摘要 FullText 评论 收藏

结直肠息肉的内镜治疗进展

刘伟强 高广荣 李达 张成. .中华临床医师杂志:电子版 2017;11(4):675.

摘要 FullText 评论 收藏

细胞凋亡抑制蛋白-1在宫颈癌及宫颈癌化疗耐药方面的研究进展

高艳梅 魏芳. .中华临床医师杂志:电子版 2017;11(4):681.

摘要 FullText 评论 收藏

反晕征在胸部疾病诊断中的研究进展

王帅 武志峰. .中华临床医师杂志:电子版 2017;11(4):686.

摘要 FullText 评论 收藏