中华临床医师杂志(电子版) 2017年2月,11卷4期

临床论著

能谱CT对炎性病变与肺癌的鉴别诊断价值

唐春耕1 尹喜2 王成伟2

832000 新疆维吾尔自治区,石河子大学医学院1;832000 新疆维吾尔自治区,石河子大学医学院第一附属医院CT/磁共振室2
王成伟,Email: 308199733@qq.com

摘要:目的 探讨能谱CT定量分析在炎性病变与肺癌中的鉴别诊断价值。方法 对49例肺结节或肿块患者行能谱平扫及两期增强扫描,所有病灶均经病理证实。测量感兴趣区的平扫、肺动脉期和主动脉期CT值、碘浓度(IC)以及有效原子序数,并计算两期增强图像的净增IC(dIC)和70 keV图像净增CT值(dCT)。用两独立样本t检验分析各能谱参数的差异。生成受试者工作特性(ROC)曲线,并比较各参数灵敏度和特异度。结果 49例患者中炎性病变15例,肺癌34例。比较炎性病变组与肺癌组各能谱参数:肺动脉期IC、dIC及70 keV图像dCT值依次为(11.95±2.52)×100 mg/L和(6.40±3.18)×100 mg/L、(9.77±2.13)×100 mg/L和(4.23±2.51)×100 mg/L及(11.70±3.41)HU和(6.16±3.75)HU;主动脉期IC及dIC分别为(23.36±5.37)×100 mg/L和(15.84±4.65)×100 mg/L及(21.18±6.06)×100 mg/L和(13.64±3.29)×100 mg/L。以上能谱参数炎性病变组均高于肺癌组,差异有统计学意义(P<0.05)。主动脉期70 keV图像dCT值及有效原子序数分别为(35.64±9.30)×100 mg/L和(29.11±12.83)×100 mg/L及7.70±0.17和7.71± 0.18,差异无统计学意义(P>0.05)。肺动脉期dIC的诊断价值最大,dIC阈值取7.385×100 mg/L,约登指数为0.845,ROC曲线下面积为0.955,灵敏度和特异度分别为93.3%和91.2%。结论 能谱CT有助于炎性病变和肺癌的鉴别诊断,尤其是dIC值诊断价值较高。

关键词:炎症; 肺肿瘤; 诊断,鉴别; 能谱成像

Differential diagnosis of spectral CT imaging in inflammatory diseases and lung cancer

Tang Chungeng1, Yin Xi2, Wang Chengwei2.

Medical College, Shihezi University, Shihezi 832000, China; 2Department of CT/MRI, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
Wang Chengwei, Email: 308199733@qq.com

Abstract:Objective To investigate the quantitative diagnostic value of spectral CT imaging in inflammatory diseases and lung cancer. Methods 49 cases with pulmonary nodule or mass received unenhanced and two phase pulmonary enhanced CT scan in gemstone spectral imaging mode. All pulmonary nodule or mass were confirmed by pathology. The value of CT and iodine concentrations of unenhanced, pulmonary phase, arterial phase and effective atomic number of regions of interest were measured, and net increase of iodine concentration (dIC) and 70 keV CT images net value (dCT) of pulmonary phase and arterial phase were calculated. Two independent samples t-test was used for the statistic analysis of each spectrum parameters between the two groups. The receiver operating characteristic (ROC) curve were generated for comparing the sensitivity and specificity of each spectral parameter. Results Among 49 cases, there were 15 of inflammatory diseases, and 34 of lung cancer. To compare the spectrum parameters between the inflammatory lesion group and the lung cancer group: The dCT of the IC, dIC and 70 keV images in pulmonary arterial phase were in the order of (11.95±2.52)×100 mg/L and (6.40±3.18)×100 mg/L, (9.77±2.13)×100 mg/L and (4.23±2.51)×100 mg/L, and (11.70±3.41) HU and (6.16±3.75) HU; The IC and dIC were (23.36±5.37)×100 mg/L and (15.84±4.65)×100 mg/L, and (21.18±6.06)×100 mg/L and (13.64±3.29)×100 mg/L in aortic phase, respectively. Inflammatory diseases group was higher than lung cancer group above spectrum parameters, and the difference was statistically significant (P<0.05). The dCT value and effective atomic number of the 70 keV in aortic phase were (35.64±9.30)×100 mg/L and (29.11±12.83)×100 mg/L, 7.70±0.17 and 7.71±0.18, respectively, and the difference was not statistically significant (P>0.05). When the dIC was 7.385×100 mg/L as diagnostic threshold in pulmonary arterial phase, the maximum Youden index was 0.845, the area under the ROC curve was 0.955, and sensitivity and specificity was 93.3% and 91.2%, respectively. Conclusion Spectral CT imaging is helpful in the diagnosis of inflammatory diseases and lung cancer, especially the dIC value.

Keywords: Inflammation; Lung neoplasms; Diagnosis, differential; Spectral imaging

+ 字体 -

参考文献

  [1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer Clin, 2011, 61: 69-90.

  [2] MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner society[J]. Radiology, 2005, 237: 395-400.

  [3] 刘江勇, 王荣品, 骆科进. 双源CT双能量虚拟平扫在肺癌诊断中的初步研究[J]. 临床放射学杂志, 2016, 35(9): 1367-1371.

  [4] De Cecco CN, Darnell A, Rengo M, et al. Dual-energy CT: oncologic applications[J]. AJR Am Roentgenol, 2012, 199: 98-105.

  [5] Aoki M, Takai Y, Narita Y, et al. Correlation between tumor size and blood volume in lung tumors: a prospective study on dual-energy gemstone spectral CT imaging[J]. J Radiat Res, 2014, 55(5): 917-923.

  [6] Hou WS, Wu HW, Yin Y, et al. Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging[J]. Acad Radiol, 2015, 22(3): 337-344.

  [7] 练伟, 姚立正, 梁志鹏, 等. 形态学特征评分联合能谱CT参数诊断孤立性肺结节的临床研究[J]. 中国CT和MRI杂志, 2016, 14(11): 57-59.

  [8] 韩铭钧, 冯敢生, 杨建勇, 等. 肺动脉不参与肺癌供血——实验和DSA研究[J]. 中华放射学杂志, 2000, 34(12): 9-11.

  [9] Xie M. Value of radiodensity determined by enhanced computed tomography for the differential diagnosis of lung masses[J]. Iran J Radiol, 2011, 8(3): 145-149.

  [10] Chamorro N, Blanco I, Sanchez M, et al. The expanding horizons of endobronchial ultrasound: diagnosis of a tumor embolism[J]. Chest, 2012, 142(5): 1334-1336.

  [11] 吴维, 张进华, 万维佳, 等. 能谱CT诊断孤立性肺结节/肿块的初步研究[J]. 放射学实践, 2014, 29(9): 998-1002.

  [12] Zhao F, Yan SX, Wang GF, et al. CT features of focal organizing pneumonia: an analysis of consecutive histopathologically confirmed 45 cases[J]. Eur J Radiol, 2014, 83(1): 73-78.

  [13] Chae EJ, Song JW, Seo JB, et al. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience[J]. Radiology, 2008, 249(2): 671-681.

  [14] 孙凯, 王新文, 张建伟, 等. CT能谱成像对孤立性肺结节鉴别诊断的初步研究[J]. 中国药物与临床, 2015, 15(6): 794-796.

  [15] 张怀瑢, 黎庶, 初金刚, 等. 能谱CT成像在恶性肺结节大小与血含量相关性研究中的应用价值[J]. CT理论与应用研究, 2015, 24(6): 777-784.

  [16] 马超豪, 李琦, 罗天友, 等. 能谱CT检测中央型肺癌周围肺组织灌注缺损[J]. 中国医学影像技术, 2015, 31(7): 1053-1057.

  [17] 王明亮, 林晓珠, 缪飞, 等. CT能谱成像对物质内碘含量测定的价值: 体模研究[J]. 中国医学计算机成像杂志, 2011, 17(2): 172-175.

  [18] Kawai T, Shibamoto Y, Hara M, et al. Can dual-energy CT evaluate contrast enhancement of ground-glass attenuation? Phantom and preliminary clinical studies[J]. Acad Radiol, 2011, 18(6): 682-689.

  [19] 曹义君, 孙凯, 张建伟, 等. CT能谱成像对肺磨玻璃结节鉴别诊断的研究[J]. 中国药物与临床, 2016, 16(9): 1285-1287.

  [20] Wang G, Zhang C, Li M, Deng K, Li W. Preliminary application of high-definition computed tomographic Gemstone Spectral Imaging in lung cancer[J]. Comput Assist Tomogr, 2014, 38(1): 77-81.

(编辑:吴莹 收稿日期:2016-09-29)