中华临床医师杂志(电子版) 2017年2月,11卷4期

综 述

前列腺癌骨转移动物模型研究进展

齐思勇1 施明2 高江平1

100853 北京,解放军总医院泌尿外科1;100850 北京,解放军军事医学科学院基础医学研究所2
高江平,Email: jpgao@163.com

摘要:近年来,我国前列腺癌发病率呈逐年升高趋势,前列腺癌骨转移是最常见的并发症之一,研究前列腺癌骨转移机制具有重要的临床意义,动物模型是研究前列腺癌骨转移的重要工具。目前建立骨转移动物模型的方法主要有自发及诱发动物模型、移植模型、转基因小鼠模型,明确各模型的优缺点,对于选择合适的骨转移动物模型很有必要。

关键词: 前列腺肿瘤; 骨转移; 模型,动物; 移植; 小鼠, 转基因

Research progress of animal model of prostate cancer bone metastasis

Qi Siyong1, Shi Ming2, Gao Jiangping1.

Department of Urology, Chinese PLA General Hospital, Beijing 100853, China; 2The Institute of Basic Medical Sciences, Chinese Academy of Military Medical Sciences, Beijing 100850, China
Gao Jiangping, Email: jpgao@163.com

Abstract:In recent years, the incidence of prostate cancer is increasing in our country. Bone metastasis is one of the most common complications of prostate cancer, it is of great clinical significance to study the mechanism of bone metastasis in prostate cancer, animal model is an important tool for researching bone metastasis of prostate cancer. At present, the animal models of bone metastasis include spontaneous and induced animal model, transplantation model and transgenic mouse model. It is necessary to make clear the advantages and disadvantages of each model to select suitable bone metastasis animal models.

Keywords:Prostatic neoplasms; Bone metastasis; Models, animal; Transplantation;  Mice, transgenic

+ 字体 -

参考文献

  [1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 10-29.

  [2] Simmons JK, Dirksen WP, Iii BEH, et al. Canine prostate cancer cell line(Probasco) produces osteoblastic metastases in vivo[J]. Prostate, 2014, 74(13): 1251-1265.

  [3] Abou DS, Ulmert D, Doucet M, et al. Whole-Body and Microenvironmental Localization of Radium-223 in Naïve and Mouse Models of Prostate Cancer Metastasis[J]. J Natl Cancer Inst, 2015, 108(5): pii: djv380.

  [4] Pollard HB, Levine MA, Eidelman O, et al. Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer[J]. In Vivo, 2010, 24(3): 249-255.

  [5] Wang N, Reeves KJ, Brown HK, et al. The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer[J]. J Exp Clin Cancer Res, 2015, 34(1): 1-12.

  [6] Ge C, Zhao G, Li Y, et al. Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease[J]. Oncogene, 2016, 35(3): 366-376.

  [7] Dyshlovoy SA, Menchinskaya ES, Venz S, et al. The marine triterpene glycoside frondoside A exhibits activity in vitro and in vivo in prostate cancer[J]. Int J Cancer, 2016, 32(10): 1601-1618.

  [8] Cui YX, Evans BA, Jiang WG. New Roles of Osteocytes in Proliferation, Migration and Invasion of Breast and Prostate Cancer Cells[J]. Anticancer Res, 2016, 36(3): 1193-1201.

  [9] Singh AS, Figg WD. In vivo models of prostate cancer metastasis to bone[J]. J URol, 2005, 174(3): 820-826.

  [10] Corey E, Quinn JE, Bladou F, et al. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells[J]. Prostate, 2002, 52(1): 20-33.

  [11] Lee YP, Schwarz EM, Davies M, et al. Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined- immunodeficient mouse model[J]. Cancer Res, 2002, 62(19): 5564-5570.

  [12] Yang J, Fizazi K, Peleg S, et al. Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway[J]. Cancer Res, 2001, 61(14): 5652-5659.

  [13] Keller JM, Schade GR, Ives K, et al. A novel canine model for prostate cancer[J]. Prostate, 2013, 73(9): 952-959.

  [14] Anidjar M, Scarlata E, Cury FL, et al. Refining the orthotopic dog prostate cancer(DPC)-1 model to better bridge the gap between rodents and men[J]. Prostate, 2012, 72(7): 752-761.

  [15] Thudi NK, Shu ST, Martin CK, et al. Development of a brain metastatic canine prostate cancer cell line[J]. Prostate, 2011, 71(12): 1251-1263.

  [16] Suckow MA, Wheeler J, Yan M. PAIII prostate tumors express prostate specific antigen(PSA) in Lobund-Wistar rats[J]. Can J Vet Res, 2009, 73(1): 39-41.

  [17] Bugan I, Altun S. Inhibitory Effects of Dunning Rat Prostate Tumor Fluid on Proliferation of the Metastatic MAT-LyLu Cell Line[J]. Asian Pac J Cancer Prev, 2015, 16(2): 831-836.

  [18] Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts[J]. Nat Rev Cancer, 2015, 15(8): 451-452.

  [19] Zhang Y, Toneri M, Ma H, et al. Real-Time GFP Intravital Imaging of the Difference in Cellular and Angiogenic Behavior of Subcutaneous and Orthotopic Nude-Mouse Models of Human PC-3 Prostate Cancer[J]. J Cell Biochem, 2016, 117(11).

  [20] Zhang Y, Wang X, Hoffman RM, et al. Real Time Metastatic Route Tracking of Orthotopic PC-3-GFP Human Prostate Cancer Using Intravital Imaging[J]. J Cell Biochem, 2016, 117(4): 1027-1032.

  [21] Wang H, Yu C, Gao X, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells[J]. Cancer Cell, 2015, 27(2): 193-210.

  [22] 崔明星, 詹新立, 刘会江, 等. 人前列腺癌PC-3细胞的荧光标记及其脊椎转移动物模型的建立[J]. 南方医科大学学报, 2013, 33(2): 243-248.

  [23] 廖晖, 陈安民, 郭风劲, 等. 人前列腺癌骨转移动物模型的建立[J]. 华中科技大学学报(医学版), 2007, 36(1): 63-66.

  [24] Valkenburg KC, Steensma MR, Williams BO, et al. Skeletal metastasis: treatments, mouse models, and the Wnt signaling[J]. Chin J Cancer, 2013, 32(7): 380-396.

  [25] Tsingotjidou AS, Ahluwalia R, Zhang X, et al. A metastatic human prostate cancer model using intraprostatic implantation of tumor produced by PC-3 neolacZ transfected cells[J]. Int J Oncol, 2004, 23(6): 1569-1574.

  [26] Morton JJ, Bird G, Refaeli Y, et al. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap[J]. Cancer Res, 2016.

  [27] Valta MP, Zhao H, Saar M, et al. Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer[J]. Clin Exp Metastasis, 2016, 33(4): 325-337.

  [28] Morton JJ, Bird G, Keysar SB, et al. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer[J]. Oncogene, 2015, 35(3): 290-300.

  [29] Holzapfel BM, Wagner F, Loessner D, et al. Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone[J]. Biomaterials, 2014, 35(13): 4108-4115.

  [30] Chang DK, Moniz RJ, Xu Z, et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo[J]. Mol Cancer, 2015, 14(1): 119.

  [31] 王元天, 孙颖浩, 钱松溪. 前列腺癌动物模型的建立和应用[J]. 临床泌尿外科杂志, 2002, 17(8): 435-437.

  [32] Gingrich JR, Barrios RJ, Morton RA, et al. Metastatic Prostate Cancer in a Transgenic Mouse[J]. Cancer Res, 1995, 56(18): 3439-3443.

  [33] Winter SF, Cooper AB, Greenberg NM. Models of metastatic prostate cancer: a transgenic perspective[J]. Prostate Cancer Prostatic Dis, 2003, 6(3): 204-211.

  [34] Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer[J]. Cancer Cell, 2003, 4(3): 209-221.

(编辑:戚红丹 收稿日期:2016-12-29)